“ProJuvenol® is a powerful synergistic blend of 
complex anti-aging ingredients inspired by nature.”

Prostate Cancer

Mol Nutr Food Res. 2010 Mar;54(3):335-44. doi: 10.1002/mnfr.200900143.

Differential effects of resveratrol and its naturally occurring methylether analogs on cell cycle and apoptosis in human androgen-responsive LNCaP cancer cells.

Wang TT1, Schoene NW, Kim YS, Mizuno CS, Rimando AM.

Author information

Abstract
Stilbenes are phytoalexins that become activated when plants are stressed. These compounds exist in foods and are widely consumed. Resveratrol is a grape-derived stilbene, which possesses a wide range of health-promoting activities, including anticancer properties. Several other stilbenes structurally similar to resveratrol are also available in food, but their biological activities remain largely unknown. In this study, we compared the effects of resveratrol and its natural derivatives pterostilbene, trans-resveratrol trimethylether, trans-pinostilbene and trans-desoxyrhapontigenin on androgen-responsive human prostate cancer LNCaP cells. We found that these compounds exert differential effects on LNCaP cell growth, cell cycle and apoptosis. Trans-resveratrol trimethylether appeared to be the most potent compound among the stilbenes tested. Treatment of LNCaP cells with trans-resveratrol trimethylether resulted in G2/M blockage while other compounds, including resveratrol, induced G1/S arrest. Moreover, different from other compounds, trans-resveratrol trimethylether induced apoptosis. At the molecular level, the effects of these compounds on cell cycle correlated with induction of the cyclin-dependent kinase inhibitor 1A and B mRNA levels. Additionally, these compounds also inhibited both androgen- as well as estrogen-mediated pathways. These results provide mechanistic information on how resveratrol and its methylether analogs may act to contribute to potential antiprostate cancer activity.

PMID: 20077416

J Agric Food Chem. 2012 Jun 27;60(25):6399-407. doi: 10.1021/jf301499e. Epub 2012 Jun 19.

Activation of AMPK by pterostilbene suppresses lipogenesis and cell-cycle progression in p53 positive and negative human prostate cancer cells.

Lin VC1, Tsai YC, Lin JN, Fan LL, Pan MH, Ho CT, Wu JY, Way TD.

Author information

Abstract
Prostate cancer is one of the leading causes of cancer death in men in Western countries. Epidemiological studies have linked the consumption of fruits and vegetables to a reduced risk of prostate cancer, and small fruits are particularly rich sources of many active phytochemical stilbenes, such as pterostilbene. As a constituent of small fruits such as grapes, berries, and their products, pterostilbene is under intense investigation as a cancer chemopreventive agent. Using the p53 wild type LNCaP and p53 null PC3 cells, we found that treatment with pterostilbene resulted in dose-dependent inhibition of cellular proliferation, which suggested that the interaction of pterostilbene with the p53 might not fully explain its inhibitory effect on proliferation. In this study, we found that pterostilbene activated AMPK in both p53 positive and negative human prostate cancer cells. Pterostilbene-activated AMPK decreased the activity and/or expression of lipogenic enzymes, such as fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). Interestingly, the resolution between apoptosis and growth arrest following AMPK activation is greatly influenced by p53 status. In p53 positive LNCaP cells, pterostilbene blocked the progression of cell cycle at G1 phase by inducing p53 expression and further up-regulating p21 expression. However, pterostilbene induced apoptosis in p53 negative PC3 cells. Our results suggest that pterostilbene may be a functional chemopreventive agent and that dietary exposure to pterostilbene would be helpful for antiprostate cancer activity.

PMID: 22670709

PLoS One. 2013;8(3):e57542. doi: 10.1371/journal.pone.0057542. Epub 2013 Mar 1.

Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer.

Li K1, Dias SJ, Rimando AM, Dhar S, Mizuno CS, Penman AD, Lewin JR, Levenson AS.

Author information

Abstract
The development of natural product agents with targeted strategies holds promise for enhanced anticancer therapy with reduced drug-associated side effects. Resveratrol found in red wine, has anticancer activity in various tumor types. We reported earlier on a new molecular target of resveratrol, the metastasis-associated protein 1 (MTA1), which is a part of nucleosome remodeling and deacetylation (NuRD) co-repressor complex that mediates gene silencing. We identified resveratrol as a regulator of MTA1/NuRD complex and re-activator of p53 acetylation in prostate cancer (PCa). In the current study, we addressed whether resveratrol analogues also possess the ability to inhibit MTA1 and to reverse p53 deacetylation. We demonstrated that pterostilbene (PTER), found in blueberries, had greater increase in MTA1-mediated p53 acetylation, confirming superior potency over resveratrol as dietary epigenetic agent. In orthotopic PCa xenografts, resveratrol and PTER significantly inhibited tumor growth, progression, local invasion and spontaneous metastasis. Furthermore, MTA1-knockdown sensitized cells to these agents resulting in additional reduction of tumor progression and metastasis. The reduction was dependent on MTA1 signaling showing increased p53 acetylation, higher apoptotic index and less angiogenesis in vivo in all xenografts treated with the compounds, and particularly with PTER. Altogether, our results indicate MTA1 as a major contributor in prostate tumor malignant progression, and support the use of strategies targeting MTA1. Our strong pre-clinical data indicate PTER as a potent, selective and pharmacologically safe natural product that may be tested in advanced PCa.

PMID: 23469203

Ann N Y Acad Sci. 2015 Aug;1348(1):1-9. doi: 10.1111/nyas.12817. Epub 2015 Jul 27.

Epigenetic potential of resveratrol and analogs in preclinical models of prostate cancer.

Kumar A1, Dhar S1, Rimando AM2, Lage JM3, Lewin JR3, Zhang X4, Levenson AS1,3.

Author information

Abstract
Lifestyle, particularly diet, is a risk factor for prostate cancer. Dietary polyphenols such as resveratrol possess anticancer properties and therefore have chemopreventive and therapeutic potential. Resveratrol has pleiotropic effects, exerting its biological activity through multiple pathways and targets, including those associated with cancer. Numerous studies have demonstrated the anticancer effects of resveratrol and, to a lesser extent, its analogs, in tissue culture, while in vivo observations are limited. Here, we provide a concise summary of our results on epigenetic mechanisms of resveratrol and analogs mediated through regulation of chromatin modifier metastasis-associated protein 1 (MTA1) and microRNAs (miRNAs), and highlight the anticancer effects of these compounds in preclinical models of prostate cancer. We suggest that the identified stilbene responsive mechanism-based biomarkers, such as MTA1 and oncogenic miRNAs, may become indicative of treatment efficacy in prostate cancer. Resveratrol analogs with better bioavailability, conferring superior pharmacological potencies and greater anticancer effects, may become stronger candidates for clinical development.

© 2015 New York Academy of Sciences.

KEYWORDS: 

MTA1; miRNA; preclinical models; prostate cancer epigenetics; pterostilbene; resveratrol

PMID: 26214308

Oncotarget. 2015 Sep 29;6(29):27214-26. doi: 10.18632/oncotarget.4877.

Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer.

Dhar S1, Kumar A1, Rimando AM2, Zhang X3, Levenson AS1,4.

Author information

Abstract
In recent years, not only has the role of miRNAs in cancer become increasingly clear but also their utilization as potential biomarkers and therapeutic targets has gained ground. Although the importance of dietary stilbenes such as resveratrol and pterostilbene as anti-cancer agents is well recognized, our understanding of their miRNA-targeting capabilities is still limited. In our previous study, we reported that resveratrol downregulates PTEN-targeting members of the oncogenic miR-17 family, which are overexpressed in prostate cancer. This study investigates the resveratrol and pterostilbene induced miRNA-mediated regulation of PTEN in prostate cancer. Here, we show that both compounds decrease the levels of endogenous as well as exogenously expressed miR-17, miR-20a and miR-106b thereby upregulating their target PTEN. Using functional luciferase reporter assays, we demonstrate that ectopically expressed miR-17, miR-20a and miR-106b directly target PTEN 3’UTR to reduce its expression, an effect rescued upon treatment with resveratrol and pterostilbene. Moreover, while stable lentiviral expression of miR-17/106a significantly decreased PTEN mRNA and protein levels and conferred survival advantage to the cells, resveratrol and more so pterostilbene was able to dramatically suppress these effects. Further, pterostilbene through downregulation of miR-17-5p and miR-106a-5p expression both in tumors and systemic circulation, rescued PTEN mRNA and protein levels leading to reduced tumor growth in vivo. Our findings implicate dietary stilbenes as an attractive miRNA-mediated chemopreventive and therapeutic strategy, and circulating miRNAs as potential chemopreventive and predictive biomarkers for clinical development in prostate cancer.

KEYWORDS: 

PTEN; oncomiRs; prostate cancer epigenetics; pterostilbene; resveratrol

PMID: 26318586

Oncotarget. 2016 Apr 5;7(14):18469-84. doi: 10.18632/oncotarget.7841.

Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer.

Dhar S1, Kumar A1, Zhang L1,2, Rimando AM3, Lage JM2, Lewin JR2, Atfi A1,4, Zhang X5, Levenson AS1,2,6.

Author information

Abstract
Overexpression of the epigenetic modifier metastasis-associated protein 1 (MTA1) is associated with aggressive human prostate cancer. The purpose of this study was to determine MTA1- targeted chemopreventive and therapeutic efficacy of pterostilbene, a natural potent analog of resveratrol, in pre-clinical models of prostate cancer. Here, we show that high levels of MTA1 expression in Pten-loss prostate cooperate with key oncogenes, including c-Myc and Akt among others, to promote prostate cancer progression. Loss-of-function studies using human prostate cancer cells indicated direct involvement of MTA1 in inducing inflammation and epithelial-to-mesenchymal transition. Importantly, pharmacological inhibition of MTA1 by pterostilbene resulted in decreased proliferation and angiogenesis and increased apoptosis. This restrained prostatic intraepithelial neoplasia (PIN) formation in prostate-specific Pten heterozygous mice and reduced tumor development and progression in prostate-specific Pten-null mice. Our findings highlight MTA1 as a key upstream regulator of prostate tumorigenesis and cancer progression. More significantly, it offers pre-clinical proof for pterostilbene as a promising lead natural agent for MTA1-targeted chemopreventive and therapeutic strategy to curb prostate cancer.

KEYWORDS: 

MTA1; chemoprevention; prostate cancer; pterostilbene; therapy

PMID: 26943043

Ann N Y Acad Sci. 2017 Jun 29. doi: 10.1111/nyas.13372. [Epub ahead of print]

Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer.

Kumar A1, Rimando AM2, Levenson AS1.

Author information

Abstract
Growing evidence indicates that deregulation of the epigenetic machinery comprising the microRNA (miRNA) network is a critical factor in the progression of various diseases, including cancer. Concurrently, dietary phytochemicals are being intensively studied for their miRNA-mediated health-beneficial properties, such as anti-inflammatory, cardioprotective, antioxidative, and anticancer properties. Available experimental data have suggested that dietary polyphenols may be effective miRNA-modulating chemopreventive and therapeutic agents. Moreover, noninvasive detection of changes in miRNA expression in liquid biopsies opens enormous possibilities for their clinical utilization as novel prognostic and predictive biomarkers. In our published studies, we identified resveratrol-regulated miRNA profiles in prostate cancer. Resveratrol downregulated the phosphatase and tensin homolog (PTEN)-targeting members of the oncogenic miR-17 family of miRNAs, which are overexpressed in prostate cancer. We have functionally validated the miRNA-mediated ability of resveratrol and its potent analog pterostilbene to rescue the tumor suppressor activity of PTEN in vitro and in vivo. Taken together, our findings implicate the use of resveratrol and its analogs as an attractive miRNA-mediated chemopreventive and therapeutic strategy in prostate cancer and the use of circulating miRNAs as potential predictive biomarkers for clinical development.

© 2017 New York Academy of Sciences.

KEYWORDS: 

biomarkers; microRNAs; prostate cancer; pterostilbene; resveratrol

PMID: 28662290